
1

G52CPP
C++ Programming

Lecture 6

Dr Jason Atkin

http://www.cs.nott.ac.uk/~jaa/cpp/
g52cpp.html

2

Last lecture

• The Stack

• Lifetime of local variables

• Global variables

• Static local variables

3

Example
int iGlobal = 1;

int* funcstatic()
{

static int iStatic = 10;
iStatic++;
return &iStatic;

}
int* funclocal()
{

int iLocal = iGlobal;
iLocal++;
return &iLocal;

}

int overwrite()
{

int iOverwrite1 = 20;
int iOverwrite2 = 30;
iOverwrite1 = iOverwrite2;
return iOverwrite1;

}

int main(int argc, char* argv[])

{

int* piStatic = funcstatic();

int* piLocal = funclocal();

funcstatic();

funclocal();

printf("%d %d %d\n", iGlobal,
*piStatic, *piLocal);

overwrite();

printf("%d %d %d\n", iGlobal,
*piStatic, *piLocal);

return 0;

}
visibility.cpp

4

This lecture

• structs
• unions

• sizeof(struct), sizeof(union)

• -> operator

• Bit fields, enums and typedef

5

structs

Without any methods
(for the moment)

6

structs
• We will start with C-type structs

– C++ structs and classes (introduced later) can be considered to be
extensions of C structs, e.g. allowing member functions, inheritance
etc

– Structs and classes are virtually the same thing in C++
• These group related data together
• Examples:

– Group three integers together to specify a time:
struct Time
{

int hour;
int minute;
int second;

};

– Shorter version, for day, month, year:
struct Date { int d, m, y };

struct.cpp

Note the ; at the end!

7

Creating a struct on the stack

• Create objects of type struct using the name
– Need to say ‘struct <name> ’ in C

• Example:
struct Date { int d, m, y; };

int main(int argc, char* argv[])

{

struct Date dob = { 1, 4, 1990 };

printf(“DOB: %02d/%02d/%04d\n”,

dob.d, dob.m, dob.y);

dob.d = 2;

return 0;

}

struct.cpp

Creates a struct on the stack
Note: no ‘new’ operator is used!!!

8

Accessing members of a struct

• Use the . operator to access members
– Exactly as for Java classes

• Example:
struct Date { int d, m, y; };

int main(int argc, char* argv[])

{

struct Date dob = { 1, 4, 1990 };

printf(“DOB: %02d/%02d/%04d\n”,

dob.d, dob.m, dob.y);

dob.d = 2;

return 0;

}

Initialisation
Like an array

Access values

struct.cpp

9

struct s act like any other type

• Once defined, you can use struct s as
any other type

• You can take the address of a variable of
type struct and store it in a struct
pointer, e.g.

struct Date* pDob = &dob;
– Note: C++ does not need this ‘struct’ keyword

• You can embed a struct as a member of
another struct

• You can create an array of struct s
• You can ask for the sizeof () a struct

10

Creating an initialised struct Date

struct Date { char d, m; short y; };

Date singleDate = { 1, 2, 2000 };

printf(
"Initialised singleDate is:%02d/%02d/%04d\n",

singleDate.d, singleDate.m,
singleDate.y);

11

Creating an initialised struct Date

Initialised singleDate is : 01/02/2000

struct Date { char d, m; short y; };

Date singleDate = { 1, 2, 2000 };

printf(
"Initialised singleDate is:%02d/%02d/%04d\n",

singleDate.d, singleDate.m,
singleDate.y);

1) Define the type ‘struct Date’

2) Create and initialise a variable of type ‘struct Date’

12

Array of structs (on the stack)
Date arrayOfDatesOnStack[5];

for (i=0 ; i < 5 ; i++)
printf(

"arrayOfDatesOnStack[%d] is : %02d/%02d/%04d\n",
i,
arrayOfDatesOnStack[i].d,
arrayOfDatesOnStack[i].m,
arrayOfDatesOnStack[i].y);

Array of 5 elements

13

Array of structs (on the stack)

arrayOfDatesOnStack[0] is : 00/00/0000

arrayOfDatesOnStack[1] is : 02/00/0000

arrayOfDatesOnStack[2] is : -104/-51/0034

arrayOfDatesOnStack[3] is : -41/53/24833

arrayOfDatesOnStack[4] is : -71/-74/24854

Date arrayOfDatesOnStack[5];

for (i=0 ; i < 5 ; i++)
printf(

"arrayOfDatesOnStack[%d] is : %02d/%02d/%04d\n",
i,
arrayOfDatesOnStack[i].d,
arrayOfDatesOnStack[i].m,
arrayOfDatesOnStack[i].y);

Values are uninitialised!!!

14

Array of dates (on the stack)

initalisedArrayOfDatesOnStack[0] is : 01/01/2001

initalisedArrayOfDatesOnStack[1] is : 02/02/2002

initialisedArrayOfDatesOnStack[2] is : 03/03/2003

initialisedArrayOfDatesOnStack[3] is : 04/04/2004

initialisedArrayOfDatesOnStack[4] is : 05/05/2005

/* Uses array initialiser and struct initialiser */
Date initArrOfDatesOnStack[] = {

{1,1,2001}, {2,2,2002}, {3,3,2003},
{4,4,2004}, {5,5,2005} };

for (i=0 ; i < 5 ; i++)
printf(

"initArrayOfDatesOnStack[%d] is : %02d/%02d/%04d\n" ,
i, initArrayOfDatesOnStack[i].d,
initArrayOfDatesOnStack[i].m,
initArrayOfDatesOnStack[i].y);

15

Position of data

• Like arrays, the positions of the members
inside a struct are known

• Elements will be placed sequentially in
memory, in the order they are defined in
the structure (sometimes this matters)

• So you CAN use the ordering to determine
where parts will be in memory

• More on sizeof(structs), and positions in a
struct later

16

dobs[4]

dobs[3]

dobs[2]

dobs[1]

dobs[0]

Arrays of struct s

Date dobs[5];

d
m

y

d
m

y

d
m

y

d
m

y

d
m

y

struct
Date

struct Date
{

char d, m;
short y;

}

char d

char m

short y

Notes:

Syntax is the same as
for arrays of basic

types, e.g. int

Elements are one after
another in memory
(like other arrays)

17

Passing struct s into functions
struct Date dob = {1, 4, 1990};

• Either pass the struct
– A (bit-wise) copy of the struct is put on the stack

• You can change this, using C++ copy constructor – see later

– Any changes made inside the function affect the copy
void foo(struct Date dob) { dob.m = 3; }

foo(dob);

• Or a pointer to the struct
– A copy of the pointer is put on the stack
– You can use the pointer to access the original copy
void bar(struct Date* pdob){(*pdob).m =3;}

bar(&dob); For a pointer you could use (*pdob).m

Use . to access struct members

18

X->Y meansmeansmeansmeans (*X).Y

struct time { int hour, minute, second; };

struct time t;
t.hour = 12;
t.minute = 34;
t.second = 14;

struct time* pt = &t;
pt->hour = 11; /* = (*pt).hour */
pt->minute = 13; /* = (*pt).minute */
pt->second = 5; /* = (*pt).second */

printf("The time is %02d:%02d:%02d\n",
t.hour, t.minute, t.second);

19

The return statement

• Functions can return only ONE value
• The returned value is copied!
• The value may be:

– a basic type (e.g. int)

– a pointer (or C++ reference, see later)
• The address is copied (same for references)

– a struct, union or object (C++ only)
• The struct, union, object etc is copied

• May create a temporary variable in calling
function, to store the returned value

20

Stack reminder

These struct s were created on the stack
(i.e. as local variables)

Remember:
Data on the stack vanishes when the stack
frame that contains it is removed from the
stack

• i.e. when the function/block in which it is
defined ends

• Do not return a pointer to one of these!

21

unions

Treating something as
“one thing OR another”

Very rarely used compared with structs
usually for low-level (e.g. o/s) code

22

Unions

• union s are very similar to struct s except
that the data members are in the same place

• In struct s data members are one after
another in memory (possibly with gaps)

• In union s data members all have the same
address

• i.e. data is of one type OR another, not both

23

Unions
• Elements of unions are in the SAME place
• Elements of unions may be different sizes

– A union is as big as the biggest thing in it (plus
any packing)

• Unions are a way of providing different ways of looking
at the same memory

union charorlong

{

unsigned long ul;

char ar[8];

};

Size 4?

Size 8

Addr: ul ar

1000
ul

[0]

1001 [1]

1002 [2]

1003 [3]

1004 [4]

1005 [5]

1006 [6]

1007 [7]

24

Bitfields and typedef

25

Bit fields
• Within structs you can specify fields with size

less than a byte
struct position
{

unsigned char x : 3; /* 3 bits */
unsigned char y : 3; /* 3 bits */
unsigned char z : 2; /* 2 bits */

};
• Which order the bits appear in the bytes is

undefined (i.e. it could be high bits first, but
could be low bits first, so bit order is
implementation dependent)

• No faster at runtime that using a char/int and
the bitwise operators (&, | , etc)

26

typedef
• Declare a new type name using typedef

• Usage:
typedef old_type new_name

• E.g.
typedef struct DATE

{ int d, m, y; } Date;

– Code can then use type Date instead of
struct DATE

• In C++ (not C) you can omit the keywords
struct, enum, union anyway
– Similar to an automatic typedef

27

Sizes and packing

28

struct s

struct DateTime
{

int time;
char day;
char month;
short year;

};

int main(int argc, char* argv[])
{

DateTime dt = { 80000, 01, 04, 1990 };

printf("DOB: %5d %02d/%02d/%04d\n",
dt.time, dt.day, dt.month, dt.year);

return 0;
}

29

struct content positions
struct DateTime {
int time; char day; char month; short year;
};

printf("Address of dt = %p, size %d\n",
&dt, sizeof(dt));

printf("Address of dt.time = %p, size %d\n",
&(dt.time), sizeof(dt.time));

printf("Address of dt.day = %p, size %d\n",
&(dt.day), sizeof(dt.day));

printf("Address of dt.month = %p, size %d\n",
&(dt.month), sizeof(dt.month));

printf("Address of dt.year = %p, size %d\n",
&(dt.year), sizeof(dt.year));

30

Positions in memory

Time first
time

day

month

year

Address Size

dt 0x7fffaab18180 8

dt.time 0x7fffaab18180 4

dt.day 0x7fffaab18184 1

dt.month 0x7fffaab18185 1

dt.year 0x7fffaab18186 2

31

Gaps when day is first

Day first
day

time

month

year

0x7fff69becaf0

0x7fff69becaf4

0x7fff69becaf8

0x7fff69becafa

Size of structure: 12

32

May have gaps at the end…

Month last
day

time

year

month

0x7fff69becaf0

0x7fff69becaf4

0x7fff69becaf8

0x7fff69becafa

Size of structure: 12

33

Tell it to pack on 1 byte boundaries

#pragma pack(1)
day

time

month

year

Address Size

dt 0x7fff7e004280 8

dt.day 0x7fff7e004280 4

dt.time 0x7fff7e004281 1

dt.month 0x7fff7e004285 1

dt.year 0x7fff7e004286 2

34

Positions in memory

Time first Day first #pragma pack(1)
time day day

time

day time

month month

year year

month

year

35

#pragma

• struct s may get empty space in them

• To align members for maximum speed
• You can usually tell compiler to pack

structs
– e.g. with gcc can use the command:

#pragma pack(1)

• #pragma means a compiler/operating
system specific pre-processor directive

36

#pragma pack(1)
#include <cstdio>

struct A { int i; char c; };
union B { int i; char c; };

#pragma pack(1)
struct C { int i; char c; };
union D { int i; char c; };

int main(int argc, char** argv)
{

printf("sizeof(char): %d\n", sizeof(char));
printf("sizeof(int): %d\n", sizeof(int));
printf("sizeof(struct A): %d\n", sizeof(struct A));
printf("sizeof(union B): %d\n", sizeof(union B));
printf("sizeof(struct C): %d\n", sizeof(struct C));
printf("sizeof(union D): %d\n", sizeof(union D));
return 0;

}

Example:
char : 1

int : 4
struct A : ?

union B : ?
struct C : ?

union D : ?

37

#pragma pack(1)
#include <cstdio>

struct A { int i; char c; };
union B { int i; char c; };

#pragma pack(1)
struct C { int i; char c; };
union D { int i; char c; };

int main(int argc, char** argv)
{

printf("sizeof(char): %d\n", sizeof(char));
printf("sizeof(int): %d\n", sizeof(int));
printf("sizeof(struct A): %d\n", sizeof(A));
printf("sizeof(union B): %d\n", sizeof(B));
printf("sizeof(struct C): %d\n", sizeof(C));
printf("sizeof(union D): %d\n", sizeof(D));
return 0;

}

Example:
char : 1

int : 4
struct A : 8

union B : 4
struct C : 5

union D : 4

38

Sizes of unions and structs

If there is no excess space for packing:
• sizeof(struct) is total of the size of the

members (i.e. sum of member sizes)
– Members are one after another in memory
– Bitfield structs use minimum number of bytes

necessary

• sizeof(union) is size of the largest
member (i.e. maximum of member sizes)
– All members are in the same place
– Largest member determines size

39

Next lecture

• Dynamic memory allocation

• Linked lists in C/C++

