G52CPP
C++ Programming
Lecture 6

Dr Jason Atkin

http://www.cs.nott.ac.uk/~jaa/cpp/
g52cpp.html

L ast lecture

The Stack

Lifetime of local variables

Global variables

Static local variables

Example

Int iIGlobal = 1;

Int* funcstatic()

{
static int iStatic = 10;
|Static++;
return &iStatic;

}

int* funclocal()

{
int iLocal = iIGlobal;
ILocal++;
return &iLocal;

}

int overwrite()

{

int iOverwritel = 20;
int iOverwrite2 = 30;

IOverwritel = iOverwrite2;

return iOverwritel;

{

int main(int argc, char* argv(])

int* piStatic = funcstatic();
int* piLocal = funclocal();
funcstatic();

funclocal();

printf("%d %d %d\n", iGlobal,
*piStatic, *piLocal);

overwrite();

printf("%d %d %d\n", iGlobal,
*piStatic, *piLocal);

return O;

visibility.cpp

This lecture

structs
unions

sizeof(struct), sizeof(union)

-> Qoperator

Bit fields, enums and typedef

Structs

Without any methods
(for the moment)

Structs

 We will start with C-type structs

— C++ structs and classes (introduced later) can be considered to be
extensions of C structs, e.g. allowing member functions, inheritance
etc

— Structs and classes are virtually the same thing in C++
 These group related data together
« Examples:

— Group three integers together to specify a time:
struct Time

Int hour;
int minute;
Int second;

¥ < Note the : at the end!

— Shorter version, for day, month, year:
struct Date {int d, m, vy},

struct.cpp

Creating a struct on the stack

— Need to say ‘struct <name> ’'inC

Example:
struct Date {int d, m,vy; };

Int main(int argc, char* argvi[])
{
struct Date dob={1, 4, 1990 };
printf(“DOB: %02d/%02d/%04d\n”,
dob.d, dob.m, dob.y);
dob.d = 2;

Create objects of type struct using the name

struct.cpp

return O; Creates a struct

on the stack

1 Note: no ‘new’ operator is used!!!

Accessing members of a struct

 Use the . operator to access members
— Exactly as for Java classes

« Example: struct.cpp

Struct Date {idt d, m,y; }; O

Int main(int argc, char* argv[])

{
Gtruct Datedob = {Z, 4, 1990 };
printf(“DOB: %02d/%02d/% n,

dob.d, dob.m, dob.y);

dob.d = 2; \ \ / Initialisation
return 0, Like an array

) Access values o

struct s act like any other type

 Once defined, you can use struct s as
any other type

* You can take the address of a variable of
type struct and store it in a struct
pointer, e.g.
struct Date* pDob = &dob;

— Note: C++ does not need this ‘struct’ keyword

e YOu can embed a struct as a member of
another struct

 You can create an array of struct s
 You can ask for the sizeof () astruct o

Creating an Initialised struct Date

struct Date { char d, m; shorty; };

Date singleDate = { 1, 2, 2000 3

printf(

"Initialised singleDate 1s:%02d/%02d/%04d\n",
singleDate.d, singleDate.m,
singleDate.y);

10

Creating an Initialised struct Date

struct Date { char d, m; shorty; };

1) Define the type ‘struct Date’

Date singleDate = { 1, 2, 2000 3

/Y

2) Create and initialise a variable of type ‘struct Date’

printf(

"Initialised singleDate 1s:%02d/%02d/%04d\n",
singleDate.d, singleDate.m,
singleDate.y);

Initialised singleDate is : 01/02/2000

Array of structs (on the stack)

Date arrayOfDatesOnStack[5]; O\

for (i=0;1<5;i++)
printf(

Array of 5 elements

"arrayOfDatesOnStack[%d] is : %02d/%02d/%04d\n",

L,
arrayOfDatesOnStack]i].d,
arrayOfDatesOnStack]i].m,

arrayOfDatesOnStack]i].y);

12

Array of structs (on the stack)

Date arrayOfDatesOnStack[5];

for (iI=0;1<5;1++)
printf(
"arrayOfDatesOnStack[%d] is : %02d/%02d/%04d\n",
L,
arrayOfDatesOnStack(i].d,
arrayOfDatesOnStack]i].m,
arrayOfDatesOnStack]i].y);

IS : 00/00/0000
IS : 02/00/0000
IS : -104/-51/0034
IS : -41/53/24833
IS : -71/-74/24854

arrayOfDatesOnStack]
arrayOfDatesOnStack
arrayOfDatesOnStack
arrayOfDatesOnStack
arrayOfDatesOnStack]

D W N = o

Values are uninitialised!!!

13

Array of dates (on the stack)

[* Uses array initialiser and struct initialiser */
Date initArrOfDatesOnStack]] = {

{1,1,2001}, {2,2,2002}, {3,3,2003},

{4,4,2004}, {5,5,2005} };

for (i=0;i1<5;i++)

printf(

"InitArrayOfDatesOnStack[%d] is : %02d/%02d/%04d\n"
I, InitArrayOfDatesOnStack]i].d,
InitArrayOfDatesOnStack[i].m,
InitArrayOfDatesOnStack([i].y);

InitalisedArrayOfDatesOnStack[0] is : 01/01/2001
InitalisedArrayOfDatesOnStack[1] is : 02/02/2002
InitialisedArrayOfDatesOnStack[2] is : 03/03/2003
InitialisedArrayOfDatesOnStack][3] is : 04/04/2004
InitialisedArrayOfDatesOnStack[4] is : 05/05/2005

Position of data

Like arrays, the positions of the members
Inside a struct are known

Elements will be placed sequentially in
memory, in the order they are defined In
the structure (sometimes this matters)

So you CAN use the ordering to determine
where parts will be in memory

More on sizeof(structs), and positions in a
struct later

15

Arrays of struct

S

struct Date

{

char d, m;
short y;

Date dobs|[5];

struct
Date

char d

char m

short y

dobs[0] | d
m
y
dobs[1] | d
m
y
dobs[2] | d
m
y
dobs[3] | d
m
y
dobs[4] | d
m
y

Notes:

Syntax is the same as
for arrays of basic
types, e.g. int

Elements are one after

another in memory
(like other arrays)

16

Passing struct s into functions

Struct

void foo(
foo(dob);

Date dob = {1, 4, 1990},

« Either pass the struct

— A (bit-wise) copy of the struct is put on the stack
* You can change this, using C++ copy constructor — see later

— Any changes made inside the function affect the copy

struct

Date dob) { dob.m =3;}

Use . to access struct members

e Or a pointer to the struct

— A copy of the pointer is put on the stack
— You can use the pointer to access the original copy

void bar(
bar(&dob);

struct

Date* pdob){(*pdob).rp =3;}

For a pointer you could use (*pdob).m

17

X->Y means (*X).Y

struct time { int hour, minute, second; };

struct time t;
t.hour = 12;
t.minute = 34;
t.second = 14;

struct time* pt = &t;

pt->hour = 11; [* = (*pt).hour
pt->minute = 13; [* = (*pt).minute
pt->second = 5; [* = (*pt).second

printf("The time is %02d:%02d:%02d\n",
t.hour, t.minute, t.second);

*/
*/
*/

18

The return statement

Functions can return only ONE value
The returned value is copied!

"he value may be:
— a basic type (e.g. Int)
— a pointer (or C++ reference, see later)
 The address is copied (same for references)
— a struct, union or object (C++ only)
* The struct, union, object etc is copied
May create a temporary variable in calling
function, to store the returned value

19

Stack reminder

These struct s were created on the stack
(l.e. as local variables)

Remember:

Data on the stack vanishes when the stack

frame that contains it Is removed from the
stack

e |.e. when the function/block in which it Is
defined ends

Do not return a pointer to one of these!

20

unions

Treating something as
“one thing OR another”

Very rarely used compared with structs
usually for low-level (e.g. o/s) code

Unions

union s are very similar to struct s except
that the data members are in the same place

In struct s data members are one after
another in memory (possibly with gaps)

In union s data members all have the same
address

l.e. data Is of one type OR another, not both

22

Unions

Elements of unions are in the SAME place
Elements of unions may be different sizes

— A union is as big as the biggest thing in it (plus
any packing)

Unions are a way of providing different ways of looking

at the same memory Addr: lul lar

1000 T

union charorlong > |
1001 | u

{

| Size 47 1002
unsigned long ul; «~ 1003

char ar[8]; < Size 8 1004

1 1005
1006

1007

Nlelalalw|N|E]S

Bitflelds and typedef

Bit fields

Within structs you can specify fields with size
less than a byte

struct position

{
unsigned char x : 3; [* 3 bits */
unsigned chary : 3; [* 3 bits */
unsigned char z : 2; [* 2 bits */
I3

Which order the bits appear in the bytes is
undefined (i.e. it could be high bits first, but
could be low bits first, so bit order is
Implementation dependent)

No faster at runtime that using a char/int and
the bitwise operators (&, | , etc) 25

typedef

Declare a new type name using typedef

Usage:
typedef old _type new _name
E.Q.
typedef struct DATE
{intd, m, vy, } Date;

— Code can then use type Date Iinstead of
struct DATE

In C++ (not C) you can omit the keywords
struct, enum, union anyway

— Similar to an automatic typedef

26

Sizes and packing

struct s

struct DateTime

{ . .
INnt time;
char day;
char month;
short year;

%

iInt main(int argc, char* argv[])

{
DateTime dt = { 80000, 01, 04, 1990 };

printf("DOB: %5d %02d/%02d/%04d\n",
dt.time, dt.day, dt.month, dt.year);

return O;

}

28

struct content positions

struct DateTime {
Int time; char day; char month; short year;

%

printf("Address of dt = %p, size %d\n",
&dt, sizeof(dt));

printf("Address of dt.time = %p, size %d\n",
&(dt.time), sizeof(dt.time)

printf("Address of dt.day = %p, size %d\n",
&(dt.day), sizeof(dt.day)

printf("Address of dt.month = %p, size %d\n",

&(dt.month), sizeof(dt.month)
printf("Address of dt.year = %p, size %d\n",
&(dt.year), sizeof(dt.year)

N’

29

Positions in memory

Time first

time

Address Size
day

t Ox7fffaabl18180 |8

month

year

t.time |Ox7fffaab18180

t.day |Ox7/fffaabl18184

t.month | Ox7fffaab18185

ol NolNol Noll Ne)
\ST N N BN

t.year |Ox/fffaabl8186

30

Gaps when day is first

Day first

day

_ time
Size of structure: 12

month

year

Ox7fff69becaf0

Ox7fff69becaf4

Ox7fff69becaf8

Ox7fff69becafa

31

May have gaps at the end...

Month last

day

_ time
Size of structure: 12

year

month

Ox7fff69becaf0

Ox7fff69becaf4

Ox7fff69becaf8

Ox7fff69becafa

32

Tell it to pack on 1 byte boundaries

#pragma pack(1)

day

time

month

year

Address Size
dt Ox7fff7e004280 |8
dt.day |Ox7fff7e004280 |4
dt.time |Ox7fff7e004281 |1
dt.month |Ox7fff7e004285 |1
dt.year |Ox7fff7e004286 |2

33

Positions in memory

Time first Day first #pragma pack(1)
time day day
time
day time
month month
year year
month

year

34

#pragma

struct s may get empty space in them

To align members for maximum speed
You can usually tell compiler to pack

Structs
— e.g. with gcc can use the command:

#pragma pack(1)

#pragma means a compiler/operating
system specific pre-processor directive

35

#pragma pack(1)

#include <cstdio>

struct A {int i; char c; }; Example:
union B {inti; char c; }; char:1
int: 4
#pragma pack(1) Struct A: ?
struct C {int i; char c; }; union B : ?
union D {inti; char c; }; struct C : ?
union D : ?
int main(int argc, char** argv)
{
printf("sizeof(char): %d\n", sizeof(char));
printf("sizeof(int): %d\n", sizeof(int));
printf("sizeof(struct A): %d\n", sizeof(struct A));
printf("sizeof(union B): %d\n", sizeof(union B));
printf("sizeof(struct C): %d\n", sizeof(struct C));
printf("sizeof(union D): %d\n", sizeof(union D));
return O;
}

36

#pragma pack(1)

#include <cstdio>

struct A {int i; char c; }; Example:
union B {inti; char c; }; char:1
int: 4
#pragma pack(1) struct A: 8
struct C {int i; char c; }; union B : 4
union D {inti; char c; }; struct C : 5
union D : 4
int main(int argc, char** argv)
{
printf("sizeof(char): %d\n", sizeof(char));
printf("sizeof(int): %d\n", sizeof(int));
printf("sizeof(struct A): %d\n", sizeof(A));
printf("sizeof(union B): %d\n", sizeof(B));
printf("sizeof(struct C): %d\n", sizeof(C));
printf("sizeof(union D): %d\n", sizeof(D));
return O;
}

37

Sizes of unions and structs

If there Is no excess space for packing:
 sizeof(struct) Is total of the size of the
members (i.e. sum of member sizes)
— Members are one after another in memory

— Bitfield structs use minimum number of bytes
necessary

 sizeof(union) is size of the largest
member (I.e. maximum of member sizes)

— All members are Iin the same place
— Largest member determines size

38

Next lecture

 Dynamic memory allocation

e Linked lists in C/C++

39

